“if i can die for my country i should be able to buy a beer†employs what type of logic?
Observations of a gamma-ray flare-up and other sources with a large-area, balloon-borne detector
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Fishman, G. J.; Meegan, C. A.
1982-01-01
Observations of a weak catholic gamma ray burst of integrated intensity two x 10 to the -6th erg/sq cm, two solar flare events, and pulsed emission profiles of A0535+26 and NP0532 are reported for several free energy intervals in the energy range from 45 to 520 keV. The measurements were made with a NaI(Tl) detector assortment flown on a balloon to 4 g/sq cm remainder atmosphere from Palestine, Texas, on Oct 6-viii, 1980, for 28 hours. The detector is a prototype of the Burst and Transient Source Experiment (BATSE) to exist flown on the Gamma-Ray Observatory (GRO).
Germanium detector vacuum encapsulation
NASA Technical Reports Server (NTRS)
Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, Grand. J.
1991-01-01
This paper describes an encapsulation technology that should significantly meliorate the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum sleeping accommodation has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very loftier vacuum conductance is accomplished inside the valveless encapsulating module. The detector module is and so sealed without breaking the bedchamber vacuum. The details of the vacuum sleeping room, valveless module, processing, and sealing method are presented.
Comparison of modeled and measured performance of a GSO crystal as gamma detector
SciTech Connect
Parno, Diana Syemour; Friend, Megan Lynn; Mamyan, Vahe
2013-11-01
We have modeled, tested, and installed a large, cerium-activated Gd{sub 2}SiO{sub 5} crystal scintillator for use as a detector of gamma rays. We nowadays the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.
The response of covered silicon detectors to monoenergetic gamma rays.
NASA Technical Reports Server (NTRS)
Reier, M.
1972-01-01
Measurements accept been made of the efficiency in detecting gamma rays of a 0.three-mm-, 3-mm-, and five-mm-thick silicon detector covered with different absorbers. Calibrated sources over the range from 279 keV to 2.75 MeV were used. The demand for the absorbers to obtain meaningful results and their contribution to the response of the detectors at electron biases from fifty to 200 keV are discussed in item. It is shown that the results are virtually independent of the diminutive number of the absorber. In add-on, the role of the absorber in increasing the efficiency with increasing photon energy for low bias settings is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.
The response of covered silicon detectors to monoenergetic gamma rays
NASA Technical Reports Server (NTRS)
Reier, Thou.
1972-01-01
Measurements were made of the efficiency in detecting gamma rays of a 0.3-mm, a 3-mm, and a 5-mm silicon detector covered with unlike absorbers. Calibrated sources roofing the range from 279 KeV to 2.75 MeV were used. The need for the absorbers in order to obtain meaningful results, and their contribution to detector response at electron biases from fifty to 200 KeV, are discussed in item. It is shown that the results are independent of the atomic number of the absorber. In addition, the role of the cushion in increasing the efficiency with increasing photon energy for depression bias setting is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.
Gamma-ray tracking method for pet systems
DOEpatents
Mihailescu, Lucian; Vetter, Kai M.
2010-06-08
Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the get-go interaction in the detection system determines a ameliorate definition of the management of the gamma-ray photon, and hence, a superior source prototype resolution. A PET organization using such a method will have increased efficiency and position resolution.
TL detectors for gamma ray dose measurements in criticality accidents.
PubMed
Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka
2007-01-01
Conclusion of gamma ray dose in mixed neutron+gamma ray fields is even so a demanding task. Dosemeters used for gamma ray dosimetry are normally in some extent sensitive to neutrons and their response variations depend on neutron energy i.due east., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in unlike holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from iii different institutions: Ruder Bosković Plant (RBI), Croatia, JoZef Stefan Establish (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentine republic. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Iii adventitious scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'gratis in air'. Post-obit types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values likewise every bit with the values obtained from the results of all participants. The results prove satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of unlike types of holders and applied corrections of dosemeters' readings are discussed.
PANDORA, a big volume low-free energy neutron detector with real-fourth dimension neutron-gamma discrimination
NASA Astrophysics Data System (ADS)
Stuhl, L.; Sasano, M.; Yako, 1000.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.
2017-09-01
The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for utilize in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA tin can be used for any reaction written report involving the emission of low energy neutrons (100 keV-10 MeV) where groundwork suppression and an increased betoken-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape bigotry (PSD) of the detected particles as well as intelligent triggering based on PSD. The effigy of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons tin be separated, while 91 ± 1% of the detected gamma rays tin be excluded, reducing the gamma ray groundwork by one lodge of magnitude.
Showtime information with the Hybrid Assortment of Gamma Ray Detector (HAGRiD)
NASA Astrophysics Data System (ADS)
Smith, K.; Baugher, T.; Burcher, S.; Carter, A. B.; Cizewski, J. A.; Chipps, K. A.; Febbraro, M.; Grzywacz, R.; Jones, K. L.; Munoz, S.; Pain, South. D.; Paulauskas, S. V.; Ratkiewicz, A.; Schmitt, K. T.; Thornsberry, C.; Toomey, R.; Walter, D.; Willoughby, H.
2018-01-01
The construction of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reactions and β-decay measurements. These experiments benefit from particle-γ coincidence measurements which provide data across that of particle detection lonely. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The pattern of the assortment permits it to exist coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Free energy (VANDLE). It is likewise designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target organization. HAGRiD's design avoids compromising the charged-particle athwart resolution due to compact geometries which are frequently used to increase the γ efficiency in other systems. First experiments with HAGRiD coupled to VANDLE too as ORRUBA and JENSA are discussed.
Simulation and Measurement of Absorbed Dose from 137 Cs Gammas Using a Si Timepix Detector
NASA Technical Reports Server (NTRS)
Stoffle, Nicholas; Pinsky, Lawrence; Empl, Anton; Semones, Edward
2011-01-01
The TimePix readout chip is a hybrid pixel detector with over 65k independent pixel elements. Each pixel contains its own circuitry for charge collection, counting logic, and readout. When coupled with a Silicon detector layer, the Timepix flake is capable of measuring the accuse, and thus free energy, deposited in the Silicon. Measurements using a NIST traceable 137Cs gamma source accept been made at Johnson Space Middle using such a Si Timepix detector, and this data is compared to simulations of energy deposition in the Si layer carried out using FLUKA.
Spectroscopic CZT detectors development for 10- and gamma-ray imaging instruments
NASA Astrophysics Data Organization (ADS)
Quadrini, Egidio 1000.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara
2007-09-01
In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-firm source of high quality solid land spectrometers for Infinite Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The brusk term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-ability electronics readout chain. The prototype blueprint and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-ability (<0.7 mW/pixel) ASIC. The prototype besides provides digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Infinite Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large expanse arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market written report for price assay evaluation in view of the foreseen massive detector production has been performed.
GADRAS Detector Response Function.
SciTech Connect
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G
2014-11-01
The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiations sources. The DRF is fundamental to the ability to perform frontwards calculations (i.e., computation of the response of a detector to a known source), every bit well equally the ability to analyze spectra to deduce the types and quantities of radioactive cloth to which the detectors are exposed. This certificate describes how gamma-ray spectra are computed and the significance of response function parameters that ascertain characteristics of detail detectors.
Loftier-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation
DOEpatents
Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.
1989-02-07
A scintillation based radiations detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a unmarried detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the calorie-free sensitive confront of a photomultiplier tube. A light tight radiation pervious housing is tending most the scintillators and a portion of the photomultiplier tube to hold the arrangement in associates and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-free energy neutrons and gamma rays. The lite pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a electric current pulse in response to each detected outcome. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the full detected radiation even count charge per unit. Pulse discrimination techniques may be used to distinguish the dissimilar radiations and their energy distribution.
High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation
DOEpatents
Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.
1989-01-01
A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A calorie-free tight radiation pervious housing is tending about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by loftier-free energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may exist processed in a conventional manner to produce a count rate output indicative of the total detected radiation fifty-fifty count rate. Pulse discrimination techniques may be used to distinguish the unlike radiations and their energy distribution.
Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, G. R.; Acernese, F.; Ackley, G.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, Thousand.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, Westward. K.; Arai, 1000.; Araya, K. C.; Arceneaux, C.; Areeda, J. South.; Ast, Due south.; Aston, S. Thousand.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. Eastward.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, G.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, Chiliad. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. South.; Bell, C.; Bergmann, One thousand.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, Due south.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, Yard.; Bogan, C.; Bail, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. East.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brownish, D. A.; Brown, D. D.; Brückner, F.; Buchman, South.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calderón Bustillo, J.; Calloni, E.; Campsite, J. B.; Campsie, P.; Cannon, Thousand. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, Fifty.; Caride, S.; Castaldi, Chiliad.; Caudill, Due south.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, 1000.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, Due east.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, Grand.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, South. S. Y.; Chung, Due south.; Ciani, G.; Clara, F.; Clark, D. Eastward.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, K.; Cominsky, L.; Constancio, Yard.; Conte, A.; Melt, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, South.; Couvares, P.; Coward, D. M.; Cowart, K. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. East.; Croce, R. P.; Crowder, S. Chiliad.; Cumming, A.; Cunningham, L.; Cuoco, Eastward.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, Yard.; Danilishin, S. L.; D'Antonio, South.; Danzmann, K.; Dattilo, Five.; Daveloza, H.; Davier, 1000.; Davies, G. S.; Daw, East. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, Thou.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, Fifty.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, Five.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, Due south.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, Yard.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, Thou.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, 5.; Fairhurst, S.; Fan, Ten.; Fang, Q.; Farinon, Southward.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, East. C.; Ferrini, F.; Fidecaro, F.; Finn, 50. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, One thousand.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, 1000.; Gair, J. R.; Gammaitoni, 50.; Gaonkar, S.; Garufi, F.; Gehrels, Due north.; Gemme, One thousand.; Gendre, B.; Genin, Due east.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, Eastward.; Goetz, R.; Gondan, 50.; González, Yard.; Gordon, Due north.; Gorodetsky, Chiliad. L.; Gossan, Southward.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, 1000.; Grant, A.; Gras, South.; Gray, C.; Greenhalgh, R. J. South.; Gretarsson, A. Yard.; Groot, P.; Grote, H.; Grover, M.; Grunewald, Due south.; Guidi, Thou. M.; Guido, C. J.; Gushwa, Grand.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, One thousand. D.; Hanson, J.; Haris, K.; Harms, J.; Harry, K. M.; Harry, I. Due west.; Harstad, East. D.; Hart, One thousand.; Hartman, Thousand. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. South.; Heptonstall, A. Due west.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, Thou. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, East. J.; Hu, Y.; Huerta, Due east.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, Chiliad.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, Due west. Westward.; Jones, D. I.; Jones, K.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, Southward.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, Grand.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, One thousand. Chiliad.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, Northward. G.; Kim, Due north.; Kim, Due south.; Kim, Y.-M.; Rex, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. Due south.; Klimenko, S.; Kline, J.; Koehlenbeck, South.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, Due west. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, Thousand.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzaro, C.; Leaci, P.; Leavey, South.; Lebigot, East. O.; Lee, C. H.; Lee, H. Grand.; Lee, H. One thousand.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, Northward.; Letendre, North.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, 5.; Lodhia, D.; Loew, One thousand.; Logue, J.; Lombardi, A. L.; Lopez, Due east.; Lorenzini, K.; Loriette, V.; Lormand, One thousand.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, Due east. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, K.; Maglione, C.; Mailand, Thousand.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Human, N.; Manca, Chiliad. Grand.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, Northward. M.; Mansell, 1000.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, Fifty.; Martynov, D.; Marx, J. Northward.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, Fifty.; Mavalvala, Due north.; May, G.; Mazumder, Due north.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, Yard.; McIver, J.; McLin, M.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, A.; Meyer, M. S.; Meyers, P. One thousand.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. Eastward.; Milano, 50.; Miller, J.; Minenkov, Y.; Mingarelli, C. Thou. F.; Mishra, C.; Mitra, Southward.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, One thousand.; Mohapatra, Due south. R. P.; Moraru, D.; Moreno, G.; Morgado, Due north.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. 50.; Mueller, Yard.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, G. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, Chiliad.; Neri, I.; Neri, Thousand.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. Due east. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, Southward.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. South.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, K. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, Yard.; Pele, A.; Penn, S.; Perreca, A.; Phelps, G.; Pichot, Thousand.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, Thousand.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Toll, Fifty. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, Fifty.; Puncken, O.; Punturo, G.; Puppo, P.; Pürrer, 1000.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. South.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, South.; Rajalakshmi, Thousand.; Rakhmanov, M.; Ramet, C.; Ramirez, G.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. Yard.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, Yard.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rogstad, S.; Rolland, L.; Rollins, J. Thousand.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, Southward.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, Five.; Sanders, J. R.; Sankar, South.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. Due south.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, Grand.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, East.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, Due south.; Shahriar, Yard. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. Fifty.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Vocaliser, Fifty.; Singh, R.; Sintes, A. 1000.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. East.; Smith-Lefebvre, N. D.; Son, East. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, Grand.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, Thou. A.; Straniero, Northward.; Strigin, Southward.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, One thousand.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. Due south.; Thrane, E.; Tiwari, V.; Tokmakov, K. 5.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trias, M.; Tse, Thousand.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. Fifty.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, Yard.; van den Make, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, M.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, West. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, K.; Walker, Chiliad.; Wallace, L.; Walsh, Due south.; Wang, Thousand.; Wang, 10.; Ward, R. Fifty.; Was, Yard.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, 50.; Wessels, P.; Westward, M.; Westphal, T.; Wette, Grand.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, Thousand.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, Chiliad.; Winkler, W.; Wipf, C. C.; Wiseman, A. K.; Wittel, H.; Woan, Thousand.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, Southward.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, Fifty.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, 1000. East.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-06-01
In this paper we study on a search for brusque-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using information from GEO 600 and one of the LIGO or Virgo detectors. Nosotros introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for instance the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is non well localized, due to the corrections required for the difference in inflow time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can ameliorate upon the sky localization of GRBs detected by the GBM, if a high-frequency GW bespeak is observed in coincidence. We utilise the method of the linear filigree in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had non been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to amend its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. Nosotros find no prove for GW signals, either with any private GRB in this sample or with the population every bit a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of x-2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.iii Mpc at 1 kHz. The reduced computational price associated with a linear search filigree volition enable rapid searches for GWs associated with Fermi GBM events once the avant-garde LIGO and Virgo detectors begin functioning.
Methods and Results of a Search for Gravitational Waves Associated with Gamma-Ray Bursts Using the GEO 600, LIGO, and Virgo Detectors
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Blackburn, Lindy L.;
2013-01-01
In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to clarify GRB events with large sky localization uncertainties such equally the localizations provided by the Fermi Gamma-ray Flare-up Monitor (GBM). Coherent searches for gravitational waves (GWs) tin can be computationally intensive when the GRB heaven position is not well-localized, due to the corrections required for the difference in inflow time between detectors. Using a linear search grid nosotros are able to reduce the computational toll of the analysis past a factor of O(x) for GBM events. Furthermore, nosotros demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected past the GBM, if a high-frequency GW betoken is observed in coincidence. We use the linear search grid method in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had non been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO600 while the detector was using squeezed-calorie-free states to improve its sensitivity; this is the first search for GWs using information from a squeezed-light interferometric observatory. We find no prove for GW signals, either with whatsoever individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, bold a fixed GW emission energy of ten(exp -two)Stellar Mass sq c, with a median exclusion altitude of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at ane kHz. The reduced computational toll associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events in the Advanced detector era.
Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 Cord IceCube Detector
NASA Astrophysics Information Arrangement (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, G.; Andeen, Chiliad.; Auffenberg, J.; Bai, 10.; Baker, Chiliad.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, M.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, East.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Dark-brown, A. M.; Buitink, Due south.; Carson, Thousand.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, South.; Colnard, C.; Cowen, D. F.; D'Agostino, M. Five.; Danninger, Chiliad.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, 50.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, Chiliad.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, Chiliad.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. Westward.; Engdegård, O.; Euler, South.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, Grand.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, Chiliad.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, 1000.; Ha, C.; Hallgren, A.; Halzen, F.; Han, Thousand.; Hanson, K.; Heinen, D.; Helbing, M.; Herquet, P.; Hickford, S.; Hill, Yard. C.; Hoffman, K. D.; Homeier, A.; Hoshina, Yard.; Hubert, D.; Huelsnitz, West.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, Grand. S.; Johansson, H.; Joseph, J. Yard.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, South. R.; Köhne, J.-H.; Kohnen, M.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, Grand.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, One thousand.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, G.; Merck, M.; Mészáros, P.; Meures, T.; Middell, East.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Cost, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, G.; Redl, P.; Resconi, E.; Rhode, Due west.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-One thousand.; Santander, M.; Sarkar, Southward.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, Thou.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. G.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. K.; Stoyanov, South.; Strahler, Eastward. A.; Straszheim, T.; Sullivan, G. Due west.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, Due south.; Tilav, Southward.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, G.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, North.; Wiebe, 1000.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, K.; Woschnagg, Thou.; Xu, C.; Xu, 10. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-04-01
IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux in a higher place 1018eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray flare-up fireball and the other a generic search for any neutrino emission from these sources over a broad range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% conviction.
Trigger design for a gamma ray detector of HIRFL-ETF
NASA Astrophysics Data System (ADS)
Du, Zhong-Wei; Su, Hong; Qian, Yi; Kong, Jie
2013-x-01
The Gamma Ray Array Detector (GRAD) is one subsystem of HIRFL-ETF (the External Target Facility (ETF) of the Heavy Ion Inquiry Facility in Lanzhou (HIRFL)). It is capable of measuring the energy of gamma-rays with 1024 CsI scintillators in in-beam nuclear experiments. The GRAD trigger should select the valid events and pass up the information from the scintillators which are not hit by the gamma-ray. The GRAD trigger has been developed based on the Field Programmable Gate Array (FPGAs) and PXI interface. It makes prompt trigger decisions to select valid events by processing the hit signals from the 1024 CsI scintillators. According to the physical requirements, the GRAD trigger module supplies 12-bit trigger information for the global trigger system of ETF and supplies a trigger signal for information acquisition (DAQ) system of GRAD. In improver, the GRAD trigger generates trigger data that are packed and transmitted to the host computer via PXI double-decker to be saved for off-line analysis. The trigger processing is implemented in the front-cease electronics of GRAD and i FPGA of the GRAD trigger module. The logic of PXI transmission and reconfiguration is implemented in another FPGA of the GRAD trigger module. During the gamma-ray experiments, the GRAD trigger performs reliably and efficiently. The function of GRAD trigger is capable of satisfying the physical requirements.
Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements
NASA Astrophysics Data System (ADS)
Saizu, Mirela Angela
2016-09-01
The developments of loftier-purity germanium detectors lucifer very well the requirements of the in-vivo human trunk measurements regarding the gamma energy ranges of the radionuclides intended to exist measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Torso Counter (WBC) from IFIN-HH is based on an "over-square" high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an culling to the experimental efficiency calibration method consisting of using reference scale sources with gamma energy lines that cover all the considered energy range, information technology is proposed to use the Monte Carlo method for the efficiency scale of the WBC using the radiations transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were fake in order to obtain the virtual efficiency scale curve of the WBC. The Monte Carlo method was validated by comparison the imitation results with the experimental measurements using point-like sources. For their optimum matching, the bear on of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector's model was refined. In social club to perform the WBC efficiency calibration for realistic people monitoring, more than numerical calculations were generated simulating extended sources of specific shape according to the standard human being characteristics.
Calibration and functioning of a existent-time gamma-ray spectrometry h2o monitor using a LaBr3(Ce) detector
NASA Astrophysics Information System (ADS)
Prieto, Eastward.; Casanovas, R.; Salvadó, M.
2018-03-01
A scintillation gamma-ray spectrometry water monitor with a 2″ × 2″ LaBr3(Ce) detector was characterized in this written report. This monitor measures gamma-ray spectra of river water. Energy and resolution calibrations were performed experimentally, whereas the detector efficiency was determined using Monte Carlo simulations with EGS5 code system. Values of the minimum detectable activity concentrations for 131I and 137Cs were calculated for different integration times. As an example of the monitor operation later calibration, a radiological increment during a rainfall episode was studied.
Source: https://www.science.gov/topicpages/g/gamma+detector+improves
Post a Comment for "“if i can die for my country i should be able to buy a beer†employs what type of logic?"